

Vocabulary

Review

What mathematical operation is shown in each equation? Write addition, subtraction, multiplication, or division.

1.
$$6 \cdot 2 = 12$$

2.
$$14 - 4 = 10$$

3.
$$27 \div 3 = 9$$

4.
$$13 + 7 = 20$$

Vocabulary Builder

variable (noun) VEHR ee uh bul

Related Words: vary (verb), varied (adjective), various (adjective)

a, x, and m are often used as variables. 100, $\frac{1}{a}$, and 3m are not variables.

Definition: A **variable** is a symbol, usually a letter, that represents one or more values of a quantity that changes.

Main Idea: The value given to a variable can change or vary. A quantity that changes, or varies, is called a variable quantity.

Example: The letter y is the **variable** in the algebraic expression 4 + y. You can replace *y* with different numbers to find values for the expression.

Use Your Vocabulary

5. Circle the *variable*(*s*) in each algebraic expression.

$$8 + 4x$$

$$y + 12$$

$$9z + y$$

$$\frac{8}{w} + 4w$$

An **algebraic expression** is a mathematical phrase that includes one or more variables. A numerical expression is a mathematical phrase involving numbers and operation symbols, but no variables.

6. Write N next to each *numerical expression*. Write A next to each algebraic expression.

$$30 + 14k$$

Got It? What is an algebraic expression for 18 more than a number n?

7. Complete the table with *add* or *subtract*.

Phrase	Math Operation
more than a number	
less a number	
sum of two numbers	
fewer than a number	

8. Circle the expression you could use to find 18 more than 6.

 6×18

$$6 + 18$$

$$18 - 6$$

$$18 + 18 + 18 + 18 + 18 + 18$$

9. Now write an algebraic expression for 18 more than a number n.

n 18

Problem 2 Writing Expressions With Multiplication and Division

Got It? What is an algebraic expression for the following word phrase?

6 times a number n

10. Complete each sentence with *add, subtract, multiply,* or *divide.* One word is used more than once.

The phrase "8 less than a number" tells you to ? 8.

The phrase "the product of a number x and 4" tells you to $\underline{?}$ x and 4.

The phrase "the quotient of 6 and a number" tells you to $\underline{?}$ 6 by x.

The phrase "n times 12" tells you to ? n and 12.

The phrase "the sum of a number n and 59" tells you to $\underline{?}$ n and 59.

11. Now write an algebraic expression for 6 times a number n.

6 n

Problem 3 Writing Expressions With Two Operations

Got lt? What is an algebraic expression for the following word phrase? 8 less than the product of a number x and 4

- **12.** Write an algebraic expression for the product of a number *x* and 4.
- **13.** Underline the correct phrase to complete the sentence.

The phrase "8 less than a certain number" tells you to

subtract 8 from a number / subtract a number from 8.

14. Cross out the expressions that do NOT represent the word phrase "8 less than the product of a number *x* and 4."

4x - 8

4x + 8

x - 8

8x - 4

Problem 4 Using Words for an Expression

Got It? What word phrase can you use to represent each algebraic expression?

x + 8.1

10x + 9

 $\frac{n}{3}$

5x - 1

15. Complete the word phrase for each expression.

the $\underline{?}$ of a number x and 8.1

the <u>?</u> of 10 <u>?</u> a number *x* and 9

the quotient of ? and 3

1 ? the product of ?

Problem 5 Writing a Rule to Describe a Pattern

Got It? Suppose you draw a segment from any one vertex of a regular polygon to the other vertices. A sample for a regular hexagon is shown at the right. Use the table to find a pattern. What is a rule for the number of nonoverlapping triangles formed? Give the rule in words and as an algebraic expression.

16. Use the table. Find the number of nonoverlapping triangles in each figure.

a polygon with 4 sides

a polygon with 5 sides

Triangles in Polygons

Number of Triangles
4 – 2
5 — 2
6 – 2

Copyright © by Pearson Education, Inc. or its affiliates. All Rights Reserved.

- 17. Underline the correct word or words to complete the sentence.The value of the expression in the table for a 6-sided figure is / is not the same as the number of triangles in the drawing of the hexagon.18. Give a rule in words to find the number of nonoverlapping triangles in a polygon.
- **19.** Write an algebraic expression for the number of nonoverlapping triangles in a polygon that has n sides.

Lesson Check • Do you UNDERSTAND?

Reasoning Use the table to decide whether 49n + 0.75 or 49 + 0.75n represents the total cost to rent a truck that you drive n miles.

Truck Rental Fees

Cost
\$49 + (\$.75 × 1)
\$49 + (\$.75 × 2)
\$49 + (\$.75 × 3)
•

- **20.** Write a rule in words for the pattern shown in the table.
- $\textbf{21.} \ \ \text{Now write an algebraic expression to represent the total cost of renting a truck.}$

Math Success

Check off the vocabulary words that you understand.

- variable
- algebraic expression
- umerical expression

Rate how well you can write algebraic expressions.

