

Order of Operations and Evaluating Expressions

Vocabulary

Review

To *simplify* a numerical expression means to replace it with its single numerical value. Circle the *simplified form* of each expression.

1. $2 \cdot 3 \cdot 4$							
	$4 \cdot 3 \cdot 2$	$6 \cdot 4$	9	24			
2.	2. $\frac{1}{2} \cdot 36$						
	$36 \cdot \frac{1}{2}$	12	18	$36\frac{1}{2}$			
3. $16 - 4 + 7$							
	16 - 7 + 4	5	10	19			

Vocabulary Builder

power (noun) pow er

 $\frac{3}{7}$

 w^z

Related Words: base, exponent

Definition: A **power** is a number that can be expressed using a base and an exponent.

Main Idea: Powers provide a shorthand way for showing repeated multiplication.

Example: The diagram above shows a **power**, its *base*, and its *exponent*. You can read the expression as, "seven to the second power."

• Use Your Vocabulary

4. Circle the expression that shows a base of 7 and an exponent of 3.

3⁷ 7(3) 7³

5. Underline the correct word to complete the sentence.

 4^{x}

A(n) exponent / power is a number that can be expressed using a base and an exponent.

6. For each expression, underline the base, circle the exponent, and draw a box around the power.

2⁵

5

 m^7

Key Concept Order of Operations

- **1.** Perform any operation(s) inside grouping symbols, such as parentheses () and brackets []. A fraction bar also acts as a grouping symbol.
- 2. Simplify powers.
- 3. Multiply and divide in order from left to right.
- 4. Add and subtract in order from left to right.

Problem 2 Simplifying a Numerical Expression

Got It? What is the simplified form of $5 \cdot 7 - 4^2 \div 2$?

8. Circle the part of the expression that you should simplify first.

 $5 \cdot 7 - 4^2 \div 2$

9. Without simplifying the expression, explain how you know that subtraction will be the last operation.

10. Simplify $5 \cdot 7 - 4^2 \div 2$. Show and justify each step.

Problem 4 Evaluating a Real-World Expression

Got lt? The shipping cost for an order at an online store is $\frac{1}{10}$ the cost of the items you order. What is an expression for the total cost of a given order? What are the total costs for orders of \$43, \$79, \$95, and \$103?

15. Complete the model.

Relate	total cost of an order	is	the cost of the items	plus	the shipping costs: $\frac{1}{10}$ · the cost of the items		
Define	Define Let c = the cost of the items.						
Write	total cost	=		+			

16. Use the model to complete the table for each value of *c*.

Cost of Items	Shipping Cost	Total Cost of Order
\$43	$\frac{1}{10} \cdot \$43 = \4.30	\$43 + \$4.30 = \$
\$79	$\frac{1}{10}$ · \$79 = \$	\$79 + \$7.90 = \$
\$95	$\frac{1}{10} \cdot \$95 = \$$	\$95 + \$ = \$104.50
\$103	$\frac{1}{10}$ • \$103 = \$	\$103 + \$ = \$

8

Need to

review

0

2

4

6

8

10

Now I

get it!

9