1-4
 Properties of Real Numbers

Vocabulary

Review

1. Write two examples of numerical expressions and algebraic expressions.

Numerical Expressions

Algebraic Expressions

?
2. Reasoning Lan has three pens and some pencils. Why does she need an algebraic expression to represent the number of writing tools she has? Explain.

Vocabulary Builder

counterexample (noun) KOWN tur eg ZAM pul
Definition: A counterexample is an example that shows that a statement is not always true.

Related Words: counteract (verb), counterargument (noun), counterclockwise (adjective)

Example: For all real numbers, $a+b=a \cdot b$ is a false statement. You can show the statement is false by using a counterexample like the one below.

$$
5+3=8 \text { is not equal to } 5 \cdot 3=15
$$

Use Your Vocabulary

Draw a line from each statement to a counterexample that shows it to be false.

Statement
 Counterexample

Mexico is in North America.
People in California live near the Pacific Ocean.

Miami is a city in Ohio.

Draw a line from each property in Column A to the equation that illustrates it in Column B.

Column A

6. Associative Property of Addition
7. Associative Property of Multiplication
8. Commutative Property of Addition
9. Commutative Property of Multiplication
10. Identity Property of Addition
11. Identity Property of Multiplication
12. Multiplication Property of -1
13. Zero Property of Multiplication

Column B

$15 y+0=15 y$
$7 b \cdot 2=2 \cdot 7 b$
$(c \cdot 3) \cdot 5=c \cdot(3 \cdot 5)$
$6 x+5 y=5 y+6 x$
$a \cdot 1=a$
$(g+11 h)+9 h=g+(11 h+9 h)$
$7 k \cdot 0=0$
$15 m \cdot(-1)=-15 m$

Problem 1 Identifying Properties

Got $1+$? What property is illustrated by $4 x \cdot 1=4 x$?
14. For each question, determine if the stated characteristic is or is not being illustrated by $4 x \cdot 1=4 x$.

Is the same number being added to both sides of the equation?
Are groupings being changed in the equation?
Is 0 or 1 part of the equation?
15. Think of the operation symbol that will make the equation $4 x \square 1=4 x$ true.

What property is illustrated by $4 x \cdot 1=4 x$?
\qquad

Problem 2 Using Properties for Mental Calculations

Got It? A can holds 3 tennis balls. A box holds 4 cans. A case holds $\mathbf{6}$ boxes. How many tennis balls are in 10 cases? Use mental math.
16. Complete the boxes below to write an expression for the number of tennis balls in 10 cases.

Relate

number of cases of tennis balls	times	number of boxes per case	times	number of cans per box	timesnumber of tennis balls per can		
	e						

17. Mental Math Circle the simplified expression.
18. What is one of the properties you used to simplify the expression? Explain how you used the property.
\qquad
\qquad

Problem 3 Writing Equivalent Expressions

Got It? Simplify each expression.
2.1(4.5x)
$6+(4 h+3)$
$\frac{8 m}{12 m n}$

In Exercises 19-20, each expression is simplified. Justify each step.
19. $2.1(4.5 x)=(2.1 \cdot 4.5) x$

$$
=9.45 x
$$

\qquad
\qquad
20. $6+(4 h+3)=(4 h+3)+6$

$$
\begin{aligned}
& =4 h+(3+6) \\
& =4 h+9
\end{aligned}
$$

\qquad
21. Complete each step of the simplification.

$$
\begin{aligned}
\frac{8 m}{12 m n} & =\frac{2 \cdot}{3 \cdot 4 \cdot m \cdot n} \\
& =\frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{n}=\frac{2}{3} \cdot \quad \cdot \quad \cdot \frac{1}{n}=\frac{2}{3} \cdot
\end{aligned}
$$

23. Complete: The simplified expression is equal to $j \cdot k$ by the ? Property of Multiplication.
24. So, the statement $j \cdot k=(k+0) \cdot j$ is \qquad . True / False

Got It? Reasoning Is the statement true or false? If it is false, give a counterexample. If true, use properties of real numbers to show the expressions are equivalent.

For all real numbers m and $n, m(n+1)=m n+1$.
Evaluate each expression for $m=4$ and $n=5$.
25. $m(n+1)=$

- $(+1)$

26. $m n+1$

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

27. Is the value of the expression in Exercise 25 equal to the value of the expression in Exercise 26?
28. Is the original statement true or false? If it is false, give a counterexample. If true, use properties of real numbers to show the expressions are equivalent.
\qquad
\qquad

Lesson Check • Do you UNDERSTAND?

Justify each step to show that $3 \cdot(10 \cdot 12)=360$.
29. The left side of the expression is simplified below. Write a reason for each step.

$$
\begin{aligned}
3 \cdot(10 \cdot 12) & =3 \cdot(12 \cdot 10) \\
& =(3 \cdot 12) \cdot 10 \\
& =36 \cdot 10 \\
& =360
\end{aligned}
$$

Math Success

Check off the vocabulary words that you understand.

Commutative Properties
equivalent expressionsAssociative Properties Identity Properties counterexample

Rate how well you can use the properties of addition and multiplication.

